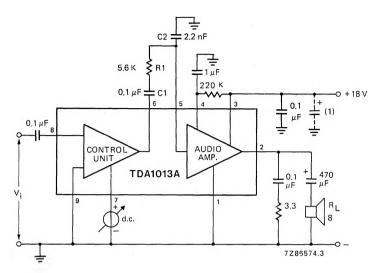
4W AUDIO AMPLIFIER WITH DC VOLUME CONTROL

The TDA1013A is a monolithic integrated audio amplifier circuit with d.c. volume control in a 9-lead single in-line (SIL) plastic package. The wide supply voltage range makes this circuit very suitable for applications in mains-fed apparatus such as television receivers and record players.

The d.c. volume control stage has a logarithmic control characteristic with a range of more than 80 dB; control can be obtained by means of a variable d.c. voltage between 3.5 and 8 V.

The audio amplifier has a well defined open loop gain and a fixed integrated closed loop gain. This offers an optimum in number of external components, performance and stability.


The SIL package (SOT-110B) offers a simple and low-cost heatsink connection.

QUICK REFERENCE DATA

Supply voltage range	V _P	15 to 35 V	
Repetitive peak output current	IORM	max.	1.5 A
Total sensitivity (d.c. control at max. gain) for $P_0 = 2.5 \text{ W}$	Vi	typ.	55 mV
Audio amplifier			
Output power at $d_{tot} = 10\%$ Vp = 18 V; R _L = 8 Ω	Po	typ.	4.5 W
Total harmonic distortion at $P_0 = 2.5 \text{ W}$; $R_L = 8 \Omega$	d _{tot}	typ.	0.5 %
Sensitivity for $P_0 = 2.5 W$	Vi	typ.	125 mV
D.C. volume control unit			
Gain control range	φ	>	80 dB
Signal handling at d _{tot} < 1% (d.c. control at 0 dB)	Vi	>	1.2 V
Sensitivity for V _O = 125 mV at max. voltage gain	v _i	typ.	55 mV
Input impedance (pin 8)	Z _i	typ.	250 kΩ

PACKAGE OUTLINE

9-lead SIL; plastic (SOT-110B).

(1) Belongs to power supply.

Fig. 1 Basic application diagram also used as test circuit with R1 = 5.1 k Ω and C1 = 22 nF.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage	V _P	max.	35	٧
Non-repetitive peak output current	IOSM	max.	3	Α
Repetitive peak output current	IORM	max.	1.5	Α
Storage temperature	T_{stg}	-55 to +	150	οС
Crystal temperature	Tj	-25 to +	150	οС
Total power dissipation	see derati	ng curve Fi	ig. 2	

HEATSINK DESIGN

Assume Vp = 18 V; R_L = 8 Ω ; T_{amb} = 60 °C (max.); T_j = 150 °C (max); for a 4 W application into an 8 Ω load, the maximum dissipation is about 2.5 W.

The thermal resistance from junction to ambient can be expressed as:

$$R_{th j-a} = R_{th j-tab} + R_{th tab-h} + R_{th h-a} = \frac{T_{j max} - T_{amb max}}{P_{max}} = \frac{150 - 60}{2.5} = 36 \text{ K/W}.$$
 Since $R_{th j-tab} = 9 \text{ K/W}$ and $R_{th tab-h} = 1 \text{ K/W}$, $R_{th h-a} = 36 - (9 + 1) = 26 \text{ K/W}.$

4W AUDIO AMPLIFIER WITH DC VOLUME CONTROL

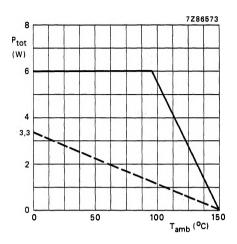


Fig. 2 Power derating curve.

—— infinite heatsink;

— — without heatsink,

CHARACTERISTICS

 V_P = 18 V; R_L = 8 Ω ; f = 1 kHz; T_{amb} = 25 °C; unless otherwise specified

Supply voltage	$V_{\mathbf{P}}$	typ. 15 t	18 V 18 o 35 V	
Total quiescent current	l _{tot}	typ.	3 5 m	nΑ
Noise output voltage (see also note)	v_n	<	1.4 m	nV
Total sensitivity (d.c. control at maximum gain) for P _O = 2.5 W	Vi	38 t typ.	o 69 m 55 m	
Frequency response (-3 dB)	f	35 Hz to	o 20 k	Hz
Audio amplifier	r.			
Repetitive peak output current	IORM	<	1.5 A	
Output power at d _{tot} = 10%	P _O	> typ.	4 V 4.5 V	
Total harmonic distortion at P _o = 2.5 W	$d_{ extsf{tot}}$	typ. <	0.5 % 1 %	
Voltage gain	G_{v}	typ.	30 d	ΙB
Sensitivity for P _o = 2.5 W	Vi	typ.	125 n	nV
Input impedance (pin 5)	Z _i	> tvp.	100 k 250 k	

Note

Measured in a bandwidth according to IEC 179-curve 'A'; R_S = 5 k Ω and d.c. control at minimum gain.

CHARACTERISTICS (continued)				
D.C. volume control unit				
Gain control range (see also Fig. 3)	ϕ	>	80	dB
Signal handling at $d_{tot} < 1\%$ (d.c. control at 0 dB)	Vi	>	1.2	٧
Sensitivity for V _o = 125 mV at max. voltage gain	٧i	typ.	55	mV
Input impedance (pin 8)	Z _i	> typ.	100 250	$k\Omega$
Output impedance (pin 6)	Z ₀	100 to	400 200	

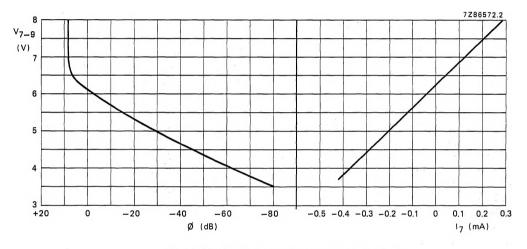


Fig. 3 Typical values gain control; V_i at pin 7.