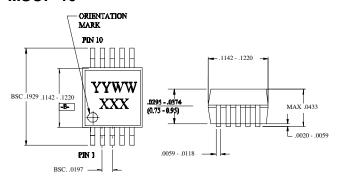


GaAs High Isolation Switch DC - 3.0 GHz

Features


- Low Power Consumption: $< 15 \mu A @ +2.5 V$
- High Isolation: 50 dB Typical @ 2 GHz
- Low Insertion Loss: < 0.8 dB @ 2 GHz
- Positive 2.5 to 5 V Control
- Low Cost Plastic MSOP-10 Package

Description

M/A-COM's SW-439 is a GaAs MMIC SPDT switch in a low cost MSOP-10 surface mount plastic package. This part is ideal for high isolation, broadband switching requirements. Typical applications include synthesizer switching, transmit/receive switching, switch matrices and filter banks in systems such as radio and cellular equipment, PCM, GPS, and fiber optic mod-

The SW-439 is fabricated as a monolithic GaAs MMIC using a mature 1 micron process. The process features full passivation

MSOP-10

Ordering Information

Part Number	Package
SW-439 PIN	MSOP 10-Lead Plastic Package
SW-439TR	Tape and Reel

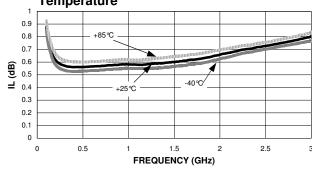
Electrical Specifications: T_A = +25 °C

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Insertion Loss	DC - 1.0 GHz	dB		0.55	0.65
	1.0 - 2.0 GHz	dB		0.65	0.75
	2.0 - 3.0 GHz	dB		0.80	0.90
Isolation	DC - 2.0 GHz	dB	45	47	
	2.0 - 3.0 GHz	dB	31	33	
VSWR	0.25 - 3.0 GHz			1.2:1	1.3:1
P _{1dB} (2.5V supply)	500 MHz - 2.0 GHz	dBm		20	
P _{1dB} (5V supply)	500 MHz - 2.0 GHz	dBm		28	
IP ₂	2 Tone 900 MHz, 5 MHz Spacing (2.5 V)	dBm		85	
IP ₃	2 Tone 900 MHz, 5 MHz Spacing (2.5 V)	dBm		50	
T_{on} , T_{off}	50% Control to 90% RF, Control to 10% RF	ns		20	
T_{rise},T_{fall}	10% to 90% RF, 90% to 10% RF	ns		10	
T ransients	In-band	mV		15	
Gate Leakage	V _{CTL} = 2.5 V	μΑ		5	15

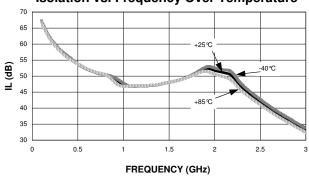
V2.00

Absolute Maximum Ratings¹

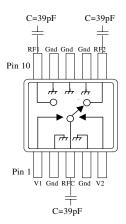
Parameter	Absolute Maximum		
Input Power	+30 dBm		
Operating Voltage	+8.5 Volts		
Operating Temperature	-40℃ to +85℃		
Storage Temperature	-65℃ to +150℃		


 Exceeding any one or a combination of these limits may cause permanent damage.

Pin Configuration

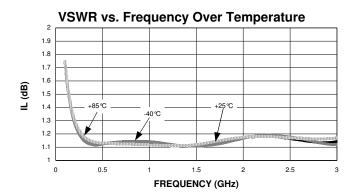

_			
PIN No.	Function	Description	
1	V1	Control 1	
2	Gnd	Ground	
3	RFC	RF Input	
4	Gnd Grou		
5	V2	Control 2	
6	RF2	RF Port 2	
7	Gnd	Ground	
8	Gnd Ground		
9	Gnd	Gnd Ground	
10	RF1	RF Port 1	

Typical Performance Curves


Insertion Loss vs. Frequency Over Temperature

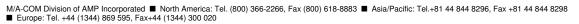
Isolation vs. Frequency Over Temperature

Functional Schematic¹



1. External blocking capacitors are required on all RF ports.

Truth Table


Mode (Control)	Control ¹ V1	Control ² V2	RFC - RF1	RFC - RF2
Positive ¹	0V	+2.5 to +5V	Off	On
	+2.5 to +5V	0V	On	Off

- 1. External DC blocking capacitors are required on all RF ports.
- 2. Logic $0=0\pm0.2$ Vdc Logic 1=+2.5 to +5 Vdc

V2.00

